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A m a t h e m a t i c a l  m o d e l  o f  l iquid f l o w  over a bot tom being washed  out  is sugges ted  a n d  invest igated.  

In the one-dimensional St. Venant approximation with an undeformable bottom the problem of a break- 

through wave was solved numerically on a computer for the case of a dry channel by Sudobicher [ 1, 2 ] and for the 

case of a wet channel by Gladyshev (see [3 ] and the bibliography given there). In the case of a constant slope of 

the bottom and a uniform channel this problem admits an asymptotic solution for t --- oo (in the most general form 

this solution is given in [3 ]). 

To calculate nonstationary liquid motion over a bottom being washed out, there is an approach in the 

literature where a determinate equation (different authors have different equations) for bottom deformation is 

assigned to St. Venant equations. Up to now, problems for a constant region have been solved [4-6 ]. 

Below, in using the above approach, the equation for the bottom deformation is not fixed in advance, but 

is derived from certain physical considerations. For the first time the problem of a break-through wave (the case 

of a dry bottom) in a variable region is considered, and a mechanism of detention of particles of the ground that 

forms the channel bottom is suggested. Thereby, a mathematical interpretation of the notion of "washing-out 

velocity," well-known in hydraulics, is given. 

We consider the traditional approach to describing flows over a deformable bottom, where an equation of 

channel deformation is added to the St. Venant equations. For a slope we have 

Oh Oh Ou Ou Ou Oh Oz 0 ku  [ u [ 
O--t + U -~x + h ~ x  = 0 ' ~ + U ~ x  + g ~ x  + g Ox h 

Oz 0 0 
O---f + ~ Q  (u, h) = O. 

(1) 

The functions h, u, and z o are sought functions. The function Q is determined below. By applying a standard 

method, we obtain an equation for d x / d t  = 2: 

( ) ~ 2 3 2 2+ u2-gh-g  2-gh +gu =O. 

From physical considerations it is required that Eq. (2) could have the root 21 = u. Substitution of the quantity u 

in place of 2 in Eq. (2) yields OQ/Oh = - u .  From this it follows that Q = - u h  + f ( u ) .  For the function f ( u )  we take 

the power-law dependence f (u )  = a u  rn, as the most simple. Having divided the left-hand side of Eq. (2), obtained 

after substitution of Q, by A-u,  we come to the equation 22 - u2 - g a m u  m-1  = 0, from which 

(4 ) U V f m--1 
)'2,3 = "2 +-- + ga m u  . 

(3) 
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In order  to satisfy the condition 2 ;e 0 or/1 ~e ~ at u = 0, it is necessary that m -- 1. Actually, when u = 0 

and m > 1, we have all three characteristics of zero slope (/l i -- 0, i = 1, 2, 3), i.e., here weak dis turbances do not 

propagate in the liquid at rest. The case/12, 3 = __.oo (m < 1) is impossible, since wave processes are described by 

a hyperbolic equation when the velocities of propagation of weak disturbances are finite. It remains that m = 1. 

Thus,  by purely logical means we come to the formula 

Q (u ,  h) = - uh  + a u  , (4) 

known in the literature [4 ] and obtained from experiments and theoretical considerations that differ from those 

stated above. Of interest is the fact that all three characteristics are related only to u and are independent  of h and 

z o. The characteristics/12 and/13 always differ in sign. Consequently,  there is no supercritical flow, no s tat ionary 

breaks exist, and no breaks ahead of a streamlined body are observed. 

System of equations (1) and (4) can be investigated by different methods. For  example, the expression on 

the characteristic d x / d t  = u at k = 0 leads to a simplification, namely,  the splitting z 0 = a In h - h - u 2 / 2 g  + C,  

and relates to Oh/Ot  + O ( u h ) / O x  = 0 and O u / O t  + g a / h  . O h / d x  = 0. Actually, we multiply the first expression of 

(1) by - g ( a  - h ) [ h ,  the second by u, and the third by g with allowance for Eq. (4) and then add them together. 

As a result, we obtain the relation 

I; + + "  -Yi + + g k ot + " T f x )  = h 

From this, 

d h  + u d u  + g d z  0 = _ k. z I .  I at h)  g 

h h 

along d x / d t  = u or at k = 0 

1 U2 -- g (a In h - h) + -~ + gz o = gC  = coas t .  

It is considered that the last equality is satisfied over the entire flow. Thus,  we obtain the first relation, and after 

elimination of z 0 from the second expression of (1), we come to the second relation of the simplified system. By 

the way, when m = 1, the characteristics of the latter d x / d t  = u /2+_ ~ / u 2 / 4  + ga  coincide with Eqs. (3). 

If we apply a reduced method of disturbances [3 ] to the system (1) and (4), we obtain the expression 

A ~ + B h  1 ~  = - C + ga  - u 0 h 1 .  (5 )  

where ~ = e - l ( x  - / 1 0 ,  ~ = t; h = h 0 + eh 1 + ...; u = u 0 + eu 1 + ...; z 0 = - i ( e ~  + 20  + ez  1 + ...; e is the fictitious 

small parameter  necessary  for reduction (it is assumed in the final formulas that e = 1); the quant i ty  C is 

proportional to k. The other  parameters are as follows: 

gih o = k u  2 ,  2 = - - f  + 

z 1 = 

+ g a  , u 1 = + g a  - h o o '  

- 1 h i .  
gh o 

4 6 0  



Equation (5) describes the propagat ion of a unidirectional wave packet of small  but finite ampli tude.  This  packet  

is observed at large t imes far from the site of the initial dis turbance.  If we take 2 = Uo/2 - ( u ~ / 2  + ga)1/2,  then  

Eq. (5) describes the propagat ion of waves to the other  side. The  constancy of 2 shows that  the velocities of 

propagat ion of the wave packet correspond to the l inear  theory,  while the deformat ion  of the shape  of the waves is 

described by nonl inear  equation (5). From the form of the r igh t -hand  side of Eq. (5) it follows that  instabi l i ty  of 

the uniform flow h = h o, u =- u 0, z 0 = - i x  occurs when (u~ /4  + g o 0  1 /2  - tt 0 < 0 ,  i.e., when u 0 > (4 /3ga)  1/2. We 

rewrite Eq. (5) in the form 

Ohl Ohl (Sa) 
A ~ + Bh  I 0--~ + Ehl  = 0 "  

Express ion (5a), called the equation of simple waves,  is invest igated in the l i terature  for smooth  solutions in the  

case where  a gradient  ca tas t rophe  (approach of the derivatives to infinity) is formed.  We do not dwell on this case 

here.  

Equation (Sa) is a model equation for sys tem (1). We consider  a problem with a discont inui ty  for Eq. (5a) 

that  is a model  problem for a b reak- th rough  wave over  a wet bottom. To  do this,  we set the  initial condit ion h I (~, 

O )  = - F ~ / B ,  0 < ~ < 1 and  the boundary  condition h 1 (0, r) -- 0. According to the s t anda rd  method ,  the condit ion 

on the discontinui ty has  the form D [ A h  1 ] = [Bh2 /2 ] ,  where If]  = f+  - f - - .  We as sume  tha t  h~- = 0. T h e n  D = 

d ~ / d r  = B h ~ / 2 A .  T h e  solution h 1 (~, r) -- - E ~ / B  of (5a) satisfies both the initial and  bounda ry  condit ions.  As a 

result ,  we have d ~ / d z  = - E ~ / 2 A .  From this we obtain  the equat ion for the discont inui ty  line ~ = exp ( - E r / 2 A ) .  

The  final solution takes the form 

(~,~-) = I 0 '  ~ < 0 ,  ~ > e x p ( - E r / 2 A )  
hi - E ~ / B  , 0 < ~ <  e x p ( - E r / 2 A )  " t 

When E < 0, the discontinui ty increases in ampl i tude  and extends  toward an increase in ~. 

Now we consider  a flow with a constant  velocity of the leading edge. For  simplification we subst i tu te  z 0 = 

- i x  + ~0 (i -- const).  Then  the r igh t -hand  side of the second expression in (1) will have the form gi - k u 2 / h .  We 

go over to the variable ~ = x - wt (w = const) in Eqs. (1) and  (4) and  obtain a sys tem of o rd ina ry  different ial  

equations: 

i t t 

(u - w) h' + hu = 0  (u - w) u + gh + gYo = gi ku2 
' h ' 

- w z 0 + ( a  - h )  u - u h '  = 0 .  (6) 

In tegra t ion of the first expression in (6) gives h(u  - w) = const. In the case of a dry  channel ,  const = 0 and  u = w. 

Then  the o ther  two expressions take the form gh' + gz~o = gi - k w 2 / h ,  - w ~  o - wh' = 0. This  contradic t ion shows 

that  there  is no wave with a constant  velocity over  a dry  channel.  In the case of a wet channel  with a uni form flow 

h -- h 0, u -- u 0, and ~o = 0 (here gih 0 = ku~) ahead  of the b reak- thhrough  wave, the first and  third express ions  of 

(6) yield (u - w)h  = (u 0 - w)h  O, - w ' Z  0 + (a - h )u  = -W~oo + (a - ho)u O. Hence  it follows that  

u:w+ u0w,  11 / 1 h 7 ~  ( a - h )  w +  ( u ~  _ ' - -  -h + w Zoo - ( a  - ho) u0 �9 

Substi tuting these values into the second expression of (6), we come to the relation 

dh 

d~ 
k [ w h +  (u o -  w) h Ol z - g i h  3 

h o ( u o - w )  [ ~ + ( U o -  w) ho ] " 
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Fig. 1. Distr ibution of the depth and the marker  of the bot tom over  the break-  

through wavelength: a) Uwash = 20 m/see ;  b) 5; c) 0. 

The  initial condit ion for this relation follows from the conditions on the discont inui ty  h(0) --- ~/(w). The  condit ions 

on the broken wave over  the deformable  bot tom lead to a quadratic equation for h but with unwieldy coefficients.  

Examina t ion  of the last equation gives the leading-edge velocity w and the depth  distr ibution in the vicinity of the 

leading edge for the case of a wet channel.  The  solution with a strong discont inui ty  (the broken  wave) is associa ted  

with u n w i e l d y  f o r m u l a s  and  with an  inves t iga t ion  of h i g h - p o w e r  a l g e b r a i c  equa t ions  r equ i r i ng  n u m e r i c a l  

calculations. In  the case of a weak discontinuity (discontinuity of the derivat ives) ,  when w = Uo/2 + (u2/4 + ga)1/2 
and ~/= h o, we have the expression 

Hence,  requir ing that  dh/d~ < 0 at ~ - 0, we obtain (u~/4 +ga)  1/2 - u 0 > 0 or  u 0 < (4ga/3) 1/2. This  is the 

condition of existence of a leading edge of the b reak- th rough  wave in the form of a weak discontinuity.  

Now we give a var iant  of the mathemat ica l  interpretat ion of the notion of "washing-out  velocity" known in 

the hydraul ic  theory  of washing-out .  The  third expression in the sys tem (1) and  (4) is represen ted  in the form 

f 
oz  ~ ]0, l ul --< Uwas h , (7) 

= ] Ou Oh 
at - ( a - h ) - ~ x  + U ~ x ,  l ul  > Uwash �9 

Here  we suggest  a mechan i sm of detent ion of particles of the ground that  forms the channel  bot tom. 

It should be noted  that  at OZo/Ot = 0 we have ord inary  St. Venant  equations,  when Ozo/Ox in the second 

equation of sys tem (1) is known. Here  the characteris t ics  have the form ;t I = 0 and  22, 3 = u +- (gh) 1/2. Thus ,  in 

passing from the first express ion of (7) to the second one and  conversely,  the character is t ics  change  abrup t ly ,  to 

which a weak discont inui ty  of the function z 0 corresponds.  

Finally,  for the sys tem (1) and (7) we set addit ional  conditions in the case of a dry  channel .  At the leading 

edge we prescr ibe the conditions 

t 

u =  w,  h = 0 ,  z 0 =  z00(x) at x =  l+  f w(t) dt .  (8) 
0 

Condit ions (8) are based on an exper iment  that  confirms that the wave front  does not wash out the bottom. 
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At the rear edge of the wave we have 

u = 0 ,  h = 0 ,  z 0 = z 0 o ( 0 )  at x = 0 .  

When t = 0, the initial data are prescribed in the form 

(9) 

u = u  0 (x ) ,  h = h  0(x) ,  z o = z 0 o ( x )  at 0_<x___l. (10) 

The initial boundary-value problem (1), (7)-(10) was solved numerically on a computer. Use was made of 

a predictor-corrector difference scheme with an explicit Lax diagram on an intermediate layer and recalculation 

by the "cross" scheme. On the basic layer the equations were taken in divergent form. A moving difference grid 

tied to the leading edge [1-3 ] was used. Figure 1 presents results of a numerical calculation of a break-through 

wave at one and the same instant of time for different values of Uwash in Eq. (7). For an arbitrary profile of the 

bottom, sections of washing-out will be observed. Thus, even a simple model (the ground is homogeneous, i.e., a 

is constant and Uwash is constant) gives physically probable results. Subsequently, more exact but more complex 
models of washing-out can be developed. 

It is of interest to note that liquid flow over a deformable bottom is an example of a physical system with 

two sharply differing scales of motion: rapid motion for the liquid and slow motion for the ground. 

C O N C L U S I O N S  

1. An original derivation of a formula for the flow rate of deposits is presented. 

2. A mechanism of detention of ground particles is suggested by introducing the notion of "washing-out 

velocity." 

3. The solution is sought in a time-variable region that is unknown in advance. 

N O T A T I O N  

u, liquid velocity; h, flow depth; z0, marker of the bottom; Q, flow rate of deposits; a,  constant of the 

ground; Uwash, constant equal to the "washing-out velocity"; g, free-fall acceleration; k, coefficient of hydraulic 

(turbulent) friction; l, coordinate of the dam; w, leading-edge velocity of the break-through wave; Zoo, initial marker 

of the bottom; i, slope of the initial bottom; x, distance; t, time; 2, characteristic; C, A, B, positive constants that 

depend on u 0, ho, a,  g; z, ~, independent variables; If], discontinuous function; ~'0, ~'oo, certain deviations from the 
sloping plane; D, discontinuity velocity; m, arbitrary constant; a prime denotes differentiation with respect to ~. 
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