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BREAK-THROUGH WAVE OVER A DEFORMABLE
BOTTOM

M. 1. Abu-Khalava and M. T. Gladyshev UDC 556.556(045)

A mathematical model of liguid flow over a bottom being washed out is suggested and investigated.

In the one-dimensional St. Venant approximation with an undeformable bottom the problem of a break-
through wave was solved numerically on a computer for the case of a dry channel by Sudobicher [1, 2] and for the
case of a wet channel by Gladyshev (see [3] and the bibliography given there). In the case of a constant slope of
the bottom and a uniform channel this problem admits an asymptotic solution for 1 = « (in the most general form
this solution is given in [3]).

To calculate nonstationary liquid motion over a bottom being washed out, there is an approach in the
literature where a determinate equation (different authors have different equations) for bottom deformation is
assigned to St. Venant equations. Up to now, problems for a constant region have been solved [4-6].

Below, in using the above approach, the equation for the bottom deformation is not fixed in advance, but
is derived from certain physical considerations. For the first time the problem of a break-through wave (the case
of a dry bottom) in a variable region is considered, and a mechanism of detention of particles of the ground that
forms the channel bottom is suggested. Thereby, a mathematical interpretation of the notion of "washing-out
velocity,” well-known in hydraulics, is given.

We consider the traditional approach to describing flows over a deformable bottom, where an equation of
channel deformation is added to the St. Venant equations. For a slope we have
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The functions 4, u, and z; are sought functions. The function Q is determined below. By applying a standard
method, we obtain an equation for dx/dit = A:
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From physical considerations it is required that Eq. (2) could have the root 4, = u. Substitution of the quantity u
in place of A in Eq. (2) yields 0Q/dh = —u. From this it follows that Q = —uh + f(u). For the function f(u) we take
the power-law dependence f(u) = au™, as the most simple. Having divided the left-hand side of Eq. (2), obtained
after substitution of Q, by A—u, we come to the equation A2 - - gamum_l = (, from which
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In order to satisfy the condition 1 # 0 or 4 # « at u = 0, it is necessary that m = 1. Actually, when & =0
and m > 1, we have all three characteristics of zero slope (li =0,i=1, 2, 3, i.e., here weak disturbances do not
propagate in the liquid at rest. The case 1, 3 = £ (m < 1) is impossible, since wave processes are described by
a hyperbolic equation when the velocities of propagation of weak disturbances are finite. It remains that m = 1.

Thus, by purely logical means we come to the formula

Qu, hy = —uh + au, (4)

known in the literature [4] and obtained from experiments and theoretical considerations that differ from those
stated above. Of interest is the fact that all three characteristics are related only to « and are independent of 4 and
zo. The characteristics 4, and 15 always differ in sign. Consequently, there is no supercritical flow, no stationary
breaks exist, and no breaks ahead of a streamlined body are observed.

System of equations (1) and (4) can be investigated by different methods. For example, the expression on
the characteristic dx/dt = u at k = 0 leads to a simplification, namely, the splitting zy=alnh — h — u2/2g + C,
and relates to dh/9t + 9(uh)/dx =0 and du/dt + ga/h -9h/dx = 0. Actually, we multiply the first expression of
(1) by —gla — h)/h, the second by u, and the third by g with allowance for Eq. (4) and then add them together.
As a result, we obtain the relation
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From this,
2
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along dx/dt=uoratk=0
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—g(alnh—-h)+5u + gzo = gC = const .

It is considered that the last equality is satisfied over the entire flow. Thus, we obtain the first relation, and after
elimination of z, from the second expression of (1), we come to the second relation of the simplified system. By
the way, when m = 1, the characteristics of the latter dx/dt = u/2+ vV u2/4 + ga coincide with Egs. (3).

If we apply a reduced method of disturbances [3] to the system (1) and (4), we obtain the expression
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where £ = e_l(x —AD,t=t,h=hy+eh + .., u=uy+eu + ..;zy=—i(el +At) + ez + ...; ¢ is the fictitious
small parameter necessary for reduction (it is assumed in the final formulas that ¢ = 1); the quantity C is
proportional to k. The other parameters are as follows:
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Equation (5) describes the propagation of a unidirectional wave packet of small but finite amplitude. This packet
is observed at large times far from the site of the initial disturbance. If we take A = ug/2 - (ug/ 2 + ga) 1/ 2, then
Eq. (5) describes the propagation of waves to the other side. The constancy of A shows that the velocities of
propagation of the wave packet correspond to the linear theory, while the deformation of the shape of the waves is
described by nonlinear equation (5). From the form of the right-hand side of Eq. (5) it follows that instability of
the uniform flow & = hy, u = uy, z5 = —ix occurs when (u(z)/4 + ga)”2 = uy < 0, i.e., when ug > (4/3ga)1/2. We
rewrite Eq. (§) in the form

A%};—I+Bhl%}§+Ehl=0‘ (5a)
Expression (5a), called the equation of simple waves, is investigated in the literature for smooth solutions in the
case where a gradient catastrophe (approach of the derivatives to infinity) is formed. We do not dwell on this case
here.

Equation (5a) is a model equation for system (1). We consider a problem with a discontinuity for Eq. (5a)
that is a model problem for a break-through wave over a wet bottom. To do this, we set the initial condition A, (£,
0) = ~EE/B, 0 < £ < 1 and the boundary condition &, (0, v) = 0. According to the standard method, the condition
on the discontinuity has the form D[AA;] = [Bhf/ 21, where [f]1=f" — f~. We assume that hy =0. Then D =
d&/dr = Bhf/ 2A. The solution h;(§, 1) = —EE/B of (5a) satisfies both the initial and boundary conditions. As a
result, we have d§/dt = —E£{/2A. From this we obtain the equation for the discontinuity line £ = exp (—Et/24).
The final solution takes the form
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When E < 0, the discontinuity increases in amplitude and extends toward an increase in £.

Now we consider a flow with a constant velocity of the leading edge. For simplification we substitute z, =
—ix + % (i = const). Then the right-hand side of the second expression in (1) will have the form gi — ku’/h. We
go over to the variable § = x — wt (w = const) in Egs. (1) and (4) and obtain a system of ordinary differential
equations:
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—w?ol+(a—h)u'—uh’=0. (6)

Integration of the first expression in (6) gives h(u — w) = const. In the case of a dry channel, const =0 and u = w.
Then the other two expressions take the form gh’ + g% =g — kw?/ h, —w;:'b — wh' = 0. This contradiction shows
that there is no wave with a constant velocity over a dry channel. In the case of a wet channel with a uniform flow
h = hy, u=u,, and 2(') = 0 (here gih, = ku(z)) ahead of the break-thhrough wave, the first and third expressions of
(6) yield (u — wyh = (ug — Why, —wzy + (@ — hyu = —wzy, + (@ — hy)u,y. Hence it follows that

u=w+(—ug——-hw)—h0, 26=iw|:(a-h) (w+(u—0—7}i)—hg) +w22)0—(a—ho)u0:|.

Substituting these values into the second expression of (6), we come to the relation

dh k (wh + (ug — w) by l" — gif®
dE~ oah '
S o (up — ) [% + (up = W) ho]

401



Fig. 1. Distribution of the depth and the marker of the bottom over the break-
through wavelength: a) u =20 m/sec; b) 5; ¢) 0.

‘wash

The initial condition for this relation follows from the conditions on the discontinuity 4(0) = A(w). The conditions
on the broken wave over the deformable bottom lead to a quadratic equation for 4 but with unwieldy coefficients.
Examination of the last equation gives the leading-edge velocity w and the depth distribution in the vicinity of the
leading edge for the case of a wet channel. The solution with a strong discontinuity (the broken wave) is associated
with unwieldy formulas and with an investigation of high-power algebraic equations requiring numerical

calculations. In the case of a weak discontinuity (discontinuity of the derivatives), when w =,/ 2+ (u(z)/ 4 + ga) 1/2

and A = h;, we have the expression
2 2
- Vo] [V o]
R R
ls [

Hence, requiring that dh/df < 0 at § = 0, we obtain (u§/4 +ga)l/2 —uy >0 or uy < (4ga/3)1/2. This is the
condition of existence of a leading edge of the break-through wave in the form of a weak discontinuity.

Now we give a variant of the mathematical interpretation of the notion of "washing-out velocity” known in
the hydraulic theory of washing-out. The third expression in the system (1) and (4) is represented in the form
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Here we suggest a mechanism of detention of particles of the ground that forms the channel bottom.

It should be noted that at dz,/ 9t = 0 we have ordinary St. Venant equations, when dzg/ dx in the second
equation of system (1) is known. Here the characteristics have the form 4, = 0 and /12,3 =u=x (gh)l/ 2, Thus, in
passing from the first expression of (7) to the second one and conversely, the characteristics change abruptly, to
which a weak discontinuity of the function z, corresponds.

Finally, for the system (1) and (7) we set additional conditions in the case of a dry channel. At the leading
edge we prescribe the conditions

t
u=w, h=0, z5= zp9(x) at x=1+[ w(dt. (8)
0

Conditions (8) are based on an experiment that confirms that the wave front does not wash out the bottom.
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At the rear edge of the wave we have
u=0, h=0, z5=12p(0) at x=0. ®
When ¢ = 0, the initial data are prescribed in the form
u=uy(x), h="hy(x), z5=12p(x) at 0 <x=1. (10)

The initial boundary-value problem (1), (7)-(10) was solved numerically on a computer. Use was made of
a predictor—corrector difference scheme with an explicit Lax diagram on an intermediate layer and recalculation
by the “"cross” scheme. On the basic layer the equations were taken in divergent form. A moving difference grid
tied to the leading edge [1-3] was used. Figure 1 presents results of a numerical calculation of a break-through
wave at one and the same instant of time for different values of u,, in Eq. (7). For an arbitrary profile of the
bottom, sections of washing-out will be observed. Thus, even a simple model (the ground is homogeneous, i.e.,
is constant and u,, is constant) gives physically probable results. Subsequently, more exact but more complex
models of washing-out can be developed. _

It is of interest to note that liquid flow over a deformable bottom is an example of a physical system with

two sharply differing scales of motion: rapid motion for the liquid and slow motion for the ground.

CONCLUSIONS

1. An original derivation of a formula for the flow rate of deposits is presented.

2. A mechanism of detention of ground particles is suggested by introducing the notion of "washing-out
velocity."”

3. The solution is sought in a time-variable region that is unknown in advance.

NOTATION

u, liquid velocity; A, flow depth; Zgs marker of the bottom; Q, flow rate of erosits; a, constant of the
ground; u,. ., constant equal to the "washing-out velocity”; g, free-fall acceleration; &, coefficient of hydraulic
(turbulent) friction; /, coordinate of the dam; w, leading-edge velocity of the break-through wave; zgg» initial marker
of the bottom; i, slope of the initial bottom; x, distance; ¢, time; A, characteristic; C, A, B, positive constants that
depend on uy, hy, @, & T, &, independent variables; [f1], discontinuous function; Zb, 2'00, certain deviations from the
sloping plane; D, discontinuity velocity; m, arbitrary constant; a prime denotes differentiation with respect to £.
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